6,252 research outputs found

    Saddle Points and Stark Ladders: Exact Calculations of Exciton Spectra in Superlattices

    Full text link
    A new, exact method for calculating excitonic absorption in superlattices is described. It is used to obtain high resolution spectra showing the saddle point exciton feature near the top of the miniband. The evolution of this feature is followed through a series of structures with increasing miniband width. The Stark ladder of peaks produced by an axial electric field is investigated, and it is shown that for weak fields the line shapes are strongly modified by coupling to continuum states, taking the form of Fano resonances. The calculated spectra, when suitably broadened, are found to be in good agreement with experimental results.Comment: 9 pages Revtex v3.0, followed by 4 uuencoded postscript figures, SISSA-CM-94-00

    Speech-plans: Generating evaluative responses in spoken dialogue

    Get PDF
    Recent work on evaluation of spoken dialogue systems indicates that better algorithms are needed for the presentation of complex information in speech. Current dialogue systems often rely on presenting sets of options and their attributes sequentially. This places a large memory burden on users, who have to remember complex trade-offs between multiple options and their attributes. To address these problems we build on previous work using multiattribute decision theory to devise speech-planning algorithms that present usertailored summaries, comparisons and recommendations that allow users to focus on critical differences between options and their attributes. We discuss the differences between speech and text planning that result from the particular demands of the speech situation.

    Partition function of the eight-vertex model with domain wall boundary condition

    Full text link
    We derive the recursive relations of the partition function for the eight-vertex model on an N×NN\times N square lattice with domain wall boundary condition. Solving the recursive relations, we obtain the explicit expression of the domain wall partition function of the model. In the trigonometric/rational limit, our results recover the corresponding ones for the six-vertex model.Comment: Latex file, 20 pages; V2, references adde

    Whittaker-Hill equation and semifinite-gap Schroedinger operators

    Full text link
    A periodic one-dimensional Schroedinger operator is called semifinite-gap if every second gap in its spectrum is eventually closed. We construct explicit examples of semifinite-gap Schroedinger operators in trigonometric functions by applying Darboux transformations to the Whittaker-Hill equation. We give a criterion of the regularity of the corresponding potentials and investigate the spectral properties of the new operators.Comment: Revised versio

    Semiclassical Analysis of the Wigner 12j12j Symbol with One Small Angular Momentum

    Full text link
    We derive an asymptotic formula for the Wigner 12j12j symbol, in the limit of one small and 11 large angular momenta. There are two kinds of asymptotic formulas for the 12j12j symbol with one small angular momentum. We present the first kind of formula in this paper. Our derivation relies on the techniques developed in the semiclassical analysis of the Wigner 9j9j symbol [L. Yu and R. G. Littlejohn, Phys. Rev. A 83, 052114 (2011)], where we used a gauge-invariant form of the multicomponent WKB wave-functions to derive asymptotic formulas for the 9j9j symbol with small and large angular momenta. When applying the same technique to the 12j12j symbol in this paper, we find that the spinor is diagonalized in the direction of an intermediate angular momentum. In addition, we find that the geometry of the derived asymptotic formula for the 12j12j symbol is expressed in terms of the vector diagram for a 9j9j symbol. This illustrates a general geometric connection between asymptotic limits of the various 3nj3nj symbols. This work contributes the first known asymptotic formula for the 12j12j symbol to the quantum theory of angular momentum, and serves as a basis for finding asymptotic formulas for the Wigner 15j15j symbol with two small angular momenta.Comment: 15 pages, 14 figure

    Academic hospital accreditation strengthens postgraduate training programmes: Case study from Universitas Academic Hospital

    Get PDF
    Benefits derived from the Council for Health Services AccreditationSouth Africa (COHSASA) accreditation of the UniversitasAcademic Hospital (UAH) in Bloemfontein are illustrated.Accreditation assessments were performed between 2001 and 2007,and full compliance with the COHSASA standards for AcademicHospitals was achieved. An initiative to develop thoracic surgeryin central South Africa (SA) was launched by the Department ofCardiothoracic Surgery at UAH. The synergistic effects of qualityimprovements in healthcare provision owing to the accreditationprocess, and the project to increase service provision in thoracicsurgery in central SA, have led to a qualitative and quantitativeincrease in thoracic surgical service provision. The importanceof academic hospital accreditation in strengthening postgraduatetraining programmes is shown, and the accreditation process isrecommended for all South African academic teaching hospitals tosupport, improve and sustain our training platforms

    Dynamic Fano Resonance of Quasienergy Excitons in Superlattices

    Full text link
    The dynamic Fano resonance (DFR) between discrete quasienergy excitons and sidebands of their ionization continua is predicted and investigated in dc- and ac-driven semiconductor superlattices. This DFR, well controlled by the ac field, delocalizes the excitons and opens an intrinsic decay channel in nonlinear four-wave mixing signals.Comment: 4pages, 4figure

    From non-degenerate conducting polymers to dense matter in the massive Gross-Neveu model

    Full text link
    Using results from the theory of non-degenerate conducting polymers like cis-polyacetylene, we generalize our previous work on dense baryonic matter and the soliton crystal in the massless Gross-Neveu model to finite bare fermion mass. In the large N limit, the exact crystal ground state can be constructed analytically, in close analogy to the bipolaron lattice in polymers. These findings are contrasted to the standard scenario with homogeneous phases only and a first order phase transition at a critical chemical potential.Comment: 12 pages, 7 figures, revtex; v2: improved readability, following advice of PRD referee; accepted for publicatio

    Anomalous relaxation kinetics of biological lattice-ligand binding models

    Full text link
    We discuss theoretical models for the cooperative binding dynamics of ligands to substrates, such as dimeric motor proteins to microtubules or more extended macromolecules like tropomyosin to actin filaments. We study the effects of steric constraints, size of ligands, binding rates and interaction between neighboring proteins on the binding dynamics and binding stoichiometry. Starting from an empty lattice the binding dynamics goes, quite generally, through several stages. The first stage represents fast initial binding closely resembling the physics of random sequential adsorption processes. Typically this initial process leaves the system in a metastable locked state with many small gaps between blocks of bound molecules. In a second stage the gaps annihilate slowly as the ligands detach and reattach. This results in an algebraic decay of the gap concentration and interesting scaling behavior. Upon identifying the gaps with particles we show that the dynamics in this regime can be explained by mapping it onto various reaction-diffusion models. The final approach to equilibrium shows some interesting dynamic scaling properties. We also discuss the effect of cooperativity on the equilibrium stoichiometry, and their consequences for the interpretation of biochemical and image reconstruction results.Comment: REVTeX, 20 pages, 17 figures; review, to appear in Chemical Physics; v2: minor correction

    Generating Complex Potentials with Real Eigenvalues in Supersymmetric Quantum Mechanics

    Get PDF
    In the framework of SUSYQM extended to deal with non-Hermitian Hamiltonians, we analyze three sets of complex potentials with real spectra, recently derived by a potential algebraic approach based upon the complex Lie algebra sl(2, C). This extends to the complex domain the well-known relationship between SUSYQM and potential algebras for Hermitian Hamiltonians, resulting from their common link with the factorization method and Darboux transformations. In the same framework, we also generate for the first time a pair of elliptic partner potentials of Weierstrass ℘\wp type, one of them being real and the other imaginary and PT symmetric. The latter turns out to be quasiexactly solvable with one known eigenvalue corresponding to a bound state. When the Weierstrass function degenerates to a hyperbolic one, the imaginary potential becomes PT non-symmetric and its known eigenvalue corresponds to an unbound state.Comment: 20 pages, Latex 2e + amssym + graphics, 2 figures, accepted in Int. J. Mod. Phys.
    • …
    corecore